Manual de usuario de Medidor digital multifunción de montaje en panel PD7777-8S4

I. Introducción

1. 1 Descripción general

El medidor digital multifunción PD7777-8S4 para montaje en panel utiliza circuitos integrados de gran escala, tecnología de muestreo digital y tecnología de montaje superficial (SMT). Está diseñado y fabricado específicamente para satisfacer las necesidades de monitorización de energía en sistemas eléctricos, fábricas, minas, instalaciones públicas, edificios inteligentes y comunidades inteligentes. Mide con alta precisión los parámetros de potencia más utilizados, como tensión trifásica, corriente trifásica, potencia activa, potencia reactiva, frecuencia, factor de potencia, energía activa, energía reactiva y energía de 4 cuadrantes. El LED de larga duración del medidor muestra los parámetros medidos y los datos de funcionamiento de los sistemas de red eléctrica. Cuenta con un puerto de comunicación 485 de alta velocidad y utiliza el protocolo Modbus. El panel del medidor cuenta con 4 botones de programación que permiten a los usuarios cambiar la pantalla y programar la configuración de los parámetros del medidor con gran flexibilidad.

El medidor digital multifunción PD7777-8S4 para montaje en panel ofrece módulos de expansión multifunciones opcionales. La función de salidas analógicas de 4 canales (0...~20 mA/4~20 mA) permite la transducción y salida de energía eléctrica. Las entradas y salidas conmutadas de 4 canales permiten la monitorización del sitio y de señales conmutadas remotas, así como el control de salida (funciones de teleseñalización y telecontrol).

El medidor digital multifunción para montaje en panel PD7777-8S4 ofrece una excelente relación calidad-precio. Reemplaza directamente transductores, medidores e indicadores de potencia convencionales, medidores de energía y unidades auxiliares. El medidor digital multifunción para montaje en panel PD7777-8S4 se utiliza ampliamente en sistemas de gestión de fuentes de energía, automatización de subestaciones transformadoras, automatización de redes de distribución eléctrica, monitorización energética de comunidades, automatización de procesos industriales, edificios inteligentes, paneles de distribución inteligentes y armarios de distribución. Ofrece ventajas como un montaje práctico, una conexión sencilla, un mantenimiento sencillo, menor carga de trabajo y la configuración programable in situ de los parámetros de entrada. Es compatible con la conexión en red de diversos controladores lógicos programables (PLC) y software de comunicación para el control de procesos industriales.

1.2 Especificaciones técnicas

	Parámetros técnicos		Presupuesto
Aporte	Red		Trifásico de tres hilos, trifásico de cuatro hilos

Voltaje	Valor nominal	CA 100 V, 220 V y 400 V
	Sobrecarga	Continuo: 1. Doble Transitorio: pliegue 2 veces/30 s
	Consumo de energía	<0,5 VA (por fase)

		Impedancia	>500 KΩ		
		Valor nominal	CA 1A y 5A		
	Actual	Sobrecarga	Continuo: 1. Doble pliegue Transitorio		
			20 veces/1 s		
		Impedancia	<20 mΩ (por fase)		
	Frecu	encia	45∼65 Hz		
	Impulso	energético	Salidas de impulsos de dos canales		
	Constante de im	pulso de energía	Potencia activa 10000imp/kwh Potencia reactiva 10000imp/kvarh		
Producción		Modo	RS-485		
	Comunicación	Protocolo	MODBUS-RTU/ASCII		
		Tasa de baudios	1200, 2400, 4800 y 9600		
	Modo de v	isualización	Pantalla LED		
	Voltaje,	corriente	±0,2%		
	Potencia activa, potencia r	eactiva y potencia aparente	±0,5%		
Grado de precisión	Frecu	encia	±0,2%		
	Energí	a activa	±0,5%		
	Energía	reactiva	±2		
Fuente de alimentación	Rai	ngo	CA y CC 80∼300 V		
	Consumo	de energía	<5 VA		
		Entrada y auxiliar fuente de alimentación	>2KV50Hz/1mín		
	Resistente al voltaje	Entrada y salida	>2KV50Hz/1mín		
Seguridad		Salida y auxiliar fuente de alimentación	>2KV50Hz/1mín		
	Resistenc	ia aislante	Fuente de alimentación auxiliar, entrada y salida a la caja del medidor $> 100 M\Omega$		
	Resistencia a la llama	de la caja del medidor	Nivel V0		
Electromagnético	descarga el	ectroestática	±15 kV		
compatibilidad	Transitorios/ráfaga	as eléctricas rápidas	±4 kV		
-	campo electromagné	tico de alta frecuencia	80 MHz~1000 MHz 10 V/m		
Ambiente	·	eratura	Temperatura de funcionamiento: -10~60° C, Temperatura de almacenamiento: -25~70° C ≤95 % HR, libre de condensación, libre de gas corrosivo		
	Eleva	ación	gas corrosivo ≤3000 m		

II. Descripción de la apariencia y montaje

2.1 Dimensiones de montaje

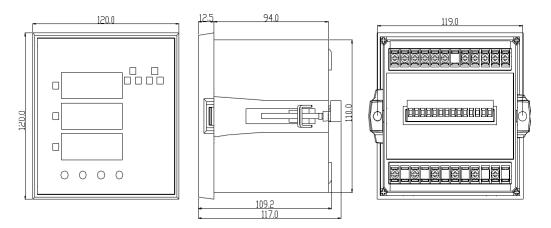


Figura 1 Diagrama de montaje del medidor digital multifunción de montaje en panel PD7777-8S4

2. 2 Método de montaje `

- ① Elija una posición adecuada en el gabinete de distribución fijo y haga un orificio de montaje de 111 × 111;
- 2 sacar el medidor, el clip de fijación y los tornillos;
- ③ Inserte el medidor en el orificio de montaje del gabinete de distribución;
- 4 Monte el clip de fijación del medidor y bloquee los tornillos de fijación.

2. 3 Bloque de terminales

Fila superior: Terminal de corriente, prueba y comunicación

	Terminal actual						Pr	uebaTermi al	n	2	185
*4	*4 5 *6 7 *8 9					46	48	47	59	58	
	Iowa IB		IB CI				P+	Q+	P-Q-	A	В

Figura 2 Terminal de corriente, prueba y comunicación

Observaciones: "P+" representa la salida positiva del impulso activo

"P-" representa la salida de tierra del impulso activo

"Q+" representa la salida positiva del impulso reactivo

"Q-" representa la salida de tierra del impulso reactivo

Fila central: Terminal de entrada y salida

ProducciónTerminal								Ten	minal de	entrada	conmut	ada	
+25	26	+27	28	+29	30	+31	32	33	34	35	36	37	38
SAI DA		SA: DA		DO	UT3	SA) DA		EN 1	IN2	IN3	IN4	COM	

Figura 3 Terminal de entrada y salida

Observaciones: El terminal de salida tiene la función de salida conmutada o la función de transducción y salida analógica respectivamente.

según diferentes modelos

COM— Tierra común de las entradas conmutadas

Fila inferior: Terminal de voltaje y fuente de alimentación

		Voltaje	Termin al		F	uente de al	imentación	Terminal
11	12		13	14	2		3	
UA	Universi d de Alabam		Universida d de California	Naciones Unidas	Yo		norte	

Figura 4 Terminal de señal

El medidor digital multifunción para montaje en panel PD7777-8S4 tiene múltiples modos de conexión para adaptarse a diferentes cargas:

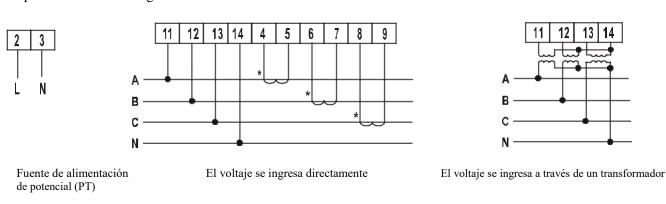


Figura 5 Modo de conexión 1

Modo 2: modo de funcionamiento trifásico de tres cables, dos TC

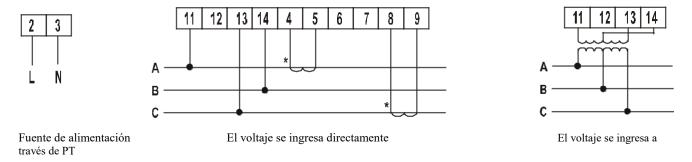


Figura 6 Modo de conexión 2

Explicación:

A. Entrada de voltaje: El voltaje de entrada no debe ser mayor que el voltaje de entrada nominal (100 V o 400 V) del producto.

De lo contrario, es necesario utilizar un PT. Se debe montar un fusible de 1 A en el puerto de entrada de voltaje.

B. Entrada de corriente: La corriente de entrada nominal estándar es de 5 A. Si la corriente es superior a 5 A, se debe utilizar un transformador de corriente externo. Si se conectan otros medidores al transformador de corriente utilizado, se debe usar el modo de conexión en serie. Antes de desconectar el cable de conexión de la entrada de corriente del producto, asegúrese de desconectar el circuito primario del transformador de corriente o cortocircuitar el circuito secundario. Se recomienda utilizar una barra de conexión sin conexión directa al transformador de corriente para facilitar la extracción.

- C. Garantiza la correspondencia entre la tensión y la corriente de entrada, la secuencia de fases y la dirección. De lo contrario, se producirían errores en los valores numéricos y signos (potencia y energía).
 - D. Alimentación: El rango de voltaje de la fuente de alimentación del medidor digital multifunción de montaje en panel PD7777-8S4 es de 80 a 270 V CA/CC. Para evitar daños al medidor, se recomienda instalar un fusible de 1 A en el lateral del cable de tensión cuando se utilice la alimentación de CA. En zonas donde la calidad de la energía eléctrica sea...

III. Descripción de la operación

3. 1 Diagrama de panel

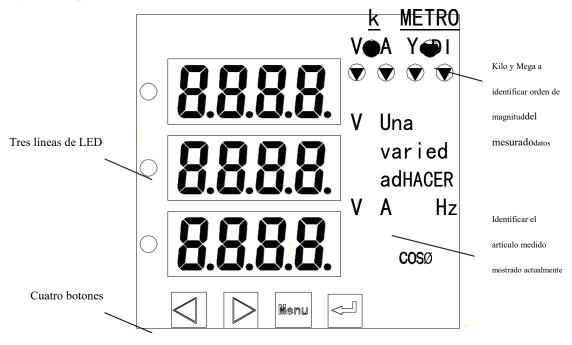


Figura 7 Diagrama de panel

3. 2 Descripción de la pantalla

Programe los modos de visualización configurando la palabra de control de visualización (DCW). También puede cambiar manualmente los modos de visualización pulsando "◀" o "▶". El medidor volverá al modo de visualización anterior 30 segundos después del cambio manual. Los modos de visualización específicos son los siguientes:

Modo de visualización	Ejemplo	Descripción
0	-	Pantalla circulante automática entre el
		ocho modos de visualización
	k METRO	Visualización fija de trifásica Voltaje UA
	V A YoDI	UB UC (trifásica de cuatro hilos) y UAB
1		UBC UCA (trifásica de tres hilos)
	V Una variedadHAC ER	La figura de la izquierda significa que el voltaje de la fase A es
	V A Hz	220,6 V, el voltaje de la fase B es 219,7 V
		El voltaje de la fase C es 220,3
	k METRO	V Visualización fija de corriente trifásica
	V A YoDI	La figura de la izquierda significa que la corriente de la fase A es

2

V Una variedadHAC ER V A Hz

100,2 A, la corriente de la fase B es 101,1

A y
La corriente de la fase C es
96,5 A

Modo de visualización	Ejemplo	Descripción
	k METRO	Visualización fija de potencia activa y reactiva.
	V A YoDI	potencia y factor de potencia
3	V Una var i edadHAC ER	La cifra de la izquierda significa que la potencia activa es 163. 0kW, potencia reactiva es 81,5 kvar, y
	V A Hz	El factor de potencia es 0,894 Visualización fija de la variable conmutada
		Estado y frecuencia.
	k METRO	La figura de la izquierda significa el canal 1 y 4 de
	V A YoDI	Las entradas conmutadas están en estado abierto,
4	V Una variedadHACER	Los canales 2 y 4 se encuentran cerrados.
	V A Hz	El canal 1 de las salidas conmutadas está en
		estado cerrado, los canales 2, 3 y 4 están en
		estado abierto.
		La frecuencia es 49,99 Hz.
	<u>k</u> METRO	Visualización fija de energía activa hacia adelante.
	V A YoDI	La figura de la izquierda significa el avance activo.
5	V Una variedadHACER	La energía es334.15kWh
	V A Hz	
	<u>k</u> METRO	Visualización fija de energía activa inversa.
	V A YoDI	La figura de la el activo inverso
6	V Una variedadHACER	izquierda significa La energía
	V A Hz	es196.03kWh
	<u>k</u> METRO	Visualización fija de energía reactiva directa
	V A YoDI	I a financia de la imprisa de significa el manetivo besis
		La figura de la izquierda significa el reactivo hacia adelante.
7	V Una variedadHACER	La energía es de 72,68 kvarh
	V A Hz	
	<u>k</u> METRO	Visualización fija de energía reactiva inversa

8	V A YoDI □ □ □ □ □ V O O □ □ □ □ O O O O V Una var i edadHACER □ □ □ O O O O O V A Hz coso □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	La figura de la izquierda significa la reacción inversa. La energía es de 26,35 kvarh

Tabla 1 Modo de visualización

3. 3 Operación de programación

En el modo de programación, el medidor proporciona cuatro elementos de menú: configuración, entrada, comunicación y salida analógica, y utiliza el modo de gestión de la estructura de menú en cascada con pantalla LED: la línea 1 muestra los datos del menú de nivel 1; la línea 2 muestra los datos del menú de nivel 2; la línea 3 muestra los datos del menú de nivel 3; la línea 4 muestra los datos de energía.

Las funciones de los cuatro botones del panel son las siguientes:

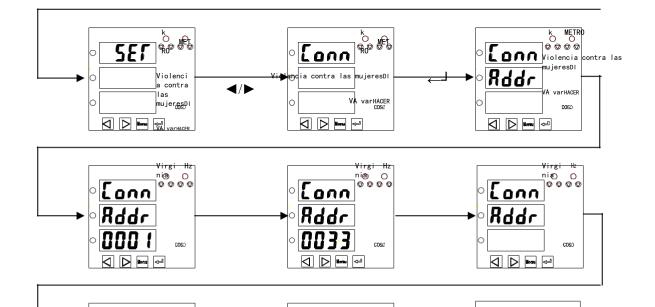
"MENÚ": En el modo de medición y visualización, pulse el botón para acceder al modo de programación. El medidor mostrará el mensaje "PSUD" para introducir una contraseña. Una vez introducida correctamente, podrá programar y configurar el medidor. Durante la programación, se utiliza para volver al menú anterior.

"◄" y "▶": En el modo de medición y visualización, estos botones se utilizan para la visualización circular manual. Durante la programación, se utilizan para ir al elemento de menú anterior o siguiente o para aumentar o disminuir un número. En el modo de introducción de números, pulse "◄" o "▶" para aumentar o disminuir rápidamente un número. Pulse "◄" o "▶" mientras mantiene pulsado "← " o "MENU"; el número cambiará en incrementos de 10 o 100.

"← ": Durante la operación de programación, se utiliza para realizar la confirmación después de la selección y regresar al menú anterior.

En el modo de visualización de voltaje, se utiliza para cambiar entre la visualización de voltaje de fase y la visualización de voltaje de línea.

Al regresar del modo de programación al modo de medición y visualización, el medidor mostrará el mensaje "SAVE YES" si se modifica algún parámetro. Pulse "MENU" para salir sin guardar. Pulse "— para guardar y salir. Si no se modifica ningún parámetro, el medidor sale directamente sin mostrar ningún mensaje. Al utilizar la función para restaurar los parámetros del sistema del medidor a la configuración de fábrica, esta se activará inmediatamente. Por lo tanto, tenga cuidado al utilizar esta función para evitar la pérdida de datos.


La jerarquía del menú es la siguiente. Los usuarios pueden configurar los parámetros apropiados según las condiciones específicas.

Nivel 1	Nivel 2	Nivel 3	Descripción
PSUD	-	8888	Se le pedirá que introduzca una contraseña. Solo se puede programar. cuando se ingresa correctamente una contraseña.
	DISP	0-4	Configurar la palabra de control de visualización.
	BRT	1-16	Ajuste el brillo de la pantalla. 1 es el más oscuro y 16 es el más brillante.
	DOBLAR	1-99	Cuando DISP se establece en 0, el tiempo de conmutación automática es
COLOCAR			mostrado. La unidad de tiempo es el segundo.

CLR.E	SÍ	Los datos de energía del medidor se borran después de la confirmación.
RSET	sí	Los parámetros del sistema del medidor se restauran a los valores de fábrica. ajustes después de la confirmación

	neto	n. 3. 4 o n. 3. 3	Configure el tipo de red eléctrica en trifásica de cuatro cables o trifásica tres cables
INPT	RATA. U Observación	1-9999	Establecer la relación de voltaje
	RATA. YO Observación 1	1-9999	Establecer el ratio actual
	Dirección	1-247	Dirección de comunicación Modbus del medidor
	BAUD	1200-38400	Velocidad en baudios de 1200, 2400, 4800, 9600, 19200 y 38400
CONEXIÓN	DATOS	Tres formatos	NINGUNO, IMPAR y PAR
	PROT	RTU/ASCII	Dos modos de transferencia de comunicación: Modbus- RTU y Modbus-ASCII
AO-x Observación 2	Artículo Parámetro del artículo 2 Parámetro 1 AOSx para la selección de la salida eléctrica. Parámetro 2 es para la configuración para eléctrica. correspondiente a la salida de escala completa. La función req que un		Parámetros. El parámetro 2 es para la configuración parámetros eléctrica. correspondiente a la salida de escala completa. La función requiere que un Módulo de transducción y salida analógica que se montará en el medidor.
DO-x Observación 2	Artículo Parámetro 1 DOSIx	Parámetro del artículo 2 DOSxL Parámetros. Los parámetros 2 y 3 del elemento sirven par los valores inferior y superior. Parámetro del artículo 3 DOSxH Parámetro del linferior y superior, El LED en la línea 2 muestra "-Lo-" y "-HI-" respectivamente).	

Tabla 2 Jerarquía del menú

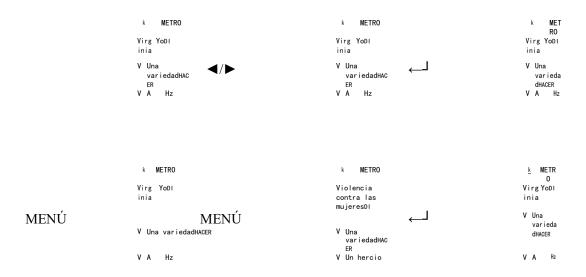


Figura 8. Ejemplos del proceso de operación de programación.

Observaciones: 1. El producto de la relación de voltaje y la relación de corriente no debe exceder 100000. De lo contrario, se produciría un desbordamiento al mostrar algunos datos.

2. x es 1, 2, 3 o 4, respectivamente correspondientes a la configuración de salida analógica (o conmutada) de los canales 1, 2, 3 y 4.

IV. Comunicación

4. 1 Prólogo

El medidor digital multifunción PD7777-8S4 para montaje en panel cuenta con un puerto de comunicación RS485 y utiliza el protocolo de comunicación Modbus. El medidor puede configurarse en cualquiera de los dos modos de transferencia: Modbus-RTU y Modbus-ASCII. Se pueden conectar un máximo de 32 medidores a una sola línea de comunicación simultáneamente. Se puede asignar una dirección de comunicación a cada medidor. Los medidores de diferentes series tienen un número diferente de bloque de terminales de comunicación. Se recomienda utilizar par trenzado apantallado (STP) con malla de cobre en la conexión de comunicación, con un diámetro de STP no inferior a 0,5 mm. Al establecer la conexión, la línea de comunicación debe ubicarse lejos de cables con alta corriente o de campos eléctricos intensos. La distancia máxima de transferencia es de 1200 metros. El modo de red típico se muestra en la figura. Cifra9. Los usuarios pueden elegir otros modos de red apropiados según las condiciones específicas.

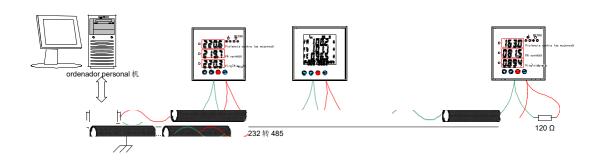


Figura 9 Diagrama de conexión de comunicación

En una sola línea de comunicación, el protocolo Modbus utiliza el modo de conexión de comunicación de reconocimiento principal y subordinado. Primero, la señal del ordenador principal se dirige a una unidad terminal (subordinada) con una dirección única. A continuación, la unidad terminal envía una señal de respuesta y la transfiere al ordenador principal en dirección inversa, es decir, en modo de funcionamiento semidúplex.

El protocolo Modbus solo permite la comunicación entre el ordenador principal (PC, PLC, etc.) y las unidades terminales, y no permite el intercambio de datos entre unidades terminales independientes. Por lo tanto, las distintas unidades terminales no ocupan la línea de comunicación al inicializarse, sino que se limitan a responder a las señales de consulta entrantes.

Formato de 4.2 bytes

4. 2. 1 Modo ASCII

Cuando el controlador está configurado en modo de transferencia ASCII, cada byte de una trama se transfiere en dos caracteres ASCII. Una ventaja de este modo es que el intervalo de tiempo para enviar caracteres puede alcanzar un segundo sin generar un error. Cada secuencia de transferencia incluye datos seriales de 10 bits. Los bits bajos se transfieren primero y luego los altos. La verificación de paridad impar, par o sin verificación de paridad es opcional.

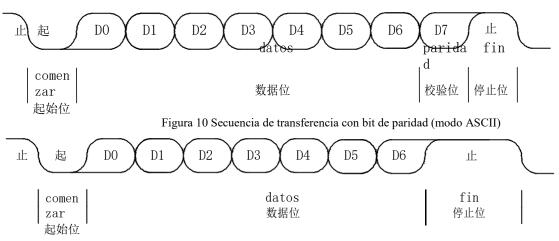


Figura 11 Secuencia de transferencia sin bit de paridad (modo ASCII)

4. 2. 2 Modo RTU

En el modo RTU, cada byte de una trama se utiliza directamente para la transferencia. Por lo tanto, a la misma velocidad en baudios, se pueden transferir más datos en modo RTU que en modo ASCII. Cada secuencia de transferencia incluye datos seriales de 11 bits. Primero se transfieren los bits bajos y luego los altos. La verificación de paridad impar, par o sin verificación de paridad es opcional. Las secuencias de transferencia con y sin verificación de paridad se muestran en 错误! 未找到引用源。y 错误! 未找到引用源。respectivamente.。

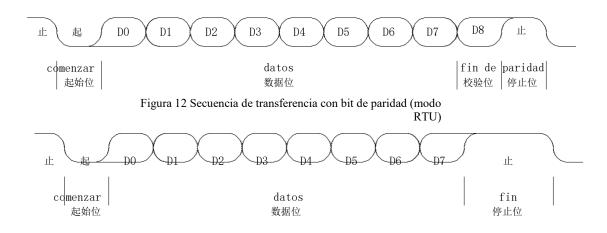


Figura 13 Secuencia de transferencia sin bit de paridad (modo RTU)

4. 3 Formato de fotograma

La trama es una unidad básica de transferencia de datos. En el protocolo Modbus, el ordenador principal utiliza el mismo formato de trama que el subordinado.

La trama ASCII comienza con el carácter ":" (el código ASCII es 3AH) y termina con dos caracteres, "CR" y "LF" (retorno de carro y avance de línea). El código ASCII es 0DH y 0AH. En otros campos, solo se pueden usar 0...9 y A...F. El formato de trama ASCII se muestra en<u>Tabla 3.</u>

Comenzar	Código de dirección	Código de función	Área de datos	Código de	Fin
: (3AH)	Dos personajes	Dos personajes	N caracteres	Das navianaiss	0DH, 0AH
				Dos personajes	

Tabla 3 Formato de trama ASCII

La trama RTU comienza con un tiempo de pausa de al menos 3,5 bytes y su final se indica también con un tiempo de pausa de al menos 3,5 bytes. La trama completa debe transferirse como un flujo continuo. Si el tiempo de pausa supera los 1,5 bytes antes de que se complete la transferencia, el subordinado reiniciará la recepción de una nueva trama. El formato de la trama RTU se muestra en<u>Mesa</u> 4.

Comenzar	DIRECCIÓN código	Función código	Área de datos	Código de paridad	Fin
Tiempo de pausa de cuatro bytes	Un byte	Un byte	N bytes	Dos bytes	Tiempo de pausa de cuatro

Tabla 4 Formato de trama

RTU

4. 3. 1 Código de dirección

El código de dirección se utiliza para identificar qué subordinado se comunica con el ordenador principal. Cada subordinado tiene un código de dirección único. El código de dirección enviado por el ordenador principal indica la dirección del subordinado al que se enviarán los datos. El código de dirección enviado por el subordinado indica la dirección devuelta por este. Las direcciones que los usuarios pueden usar son 1~247. Las demás direcciones están reservadas.

4. 3. 2 Código de función

El código de función representa los tipos de funciones que debe realizar el subordinado. Todos los códigos de función, sus definiciones y las operaciones específicas que admite el medidor se enumeran en <u>Tabla 5</u>.

Código de función	Definición	Operación
03/04H	Leer registro	Leer datos de uno o varios registros
10 horas	Escribe uno o varios consecutivos registro(s)	Escribe n dígitos binarios de 16 bits en n registros consecutivos

Tabla 5 Código de función

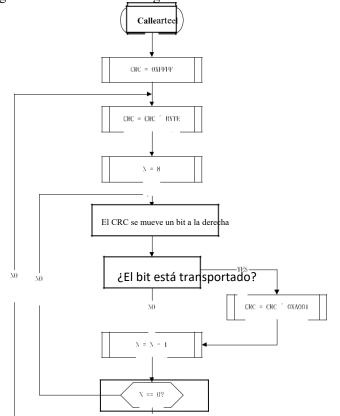
4. 3. 3 Área de datos

El área de datos difiere según el código de función. Los datos pueden ser valores numéricos, direcciones de referencia, etc. Por ejemplo: el código de función 03H indica al medidor que lea un valor numérico en un registro; el área de datos debe incluir la dirección inicial del registro a leer y la longitud de la lectura.

4. 3. 4 Código de paridad

El código de paridad se utiliza para que la computadora principal o la subordinada juzguen si ocurrió algún error en los datos recibidos para que la comunicación del sistema sea más confiable.

Modbus-ASCII utiliza el método de verificación de redundancia longitudinal (LRC). Los bytes, excepto los dos puntos iniciales y los caracteres CR y LF finales, se suman y luego se complementa la suma. El resultado es el código LRC. Tenga en cuenta que, al preparar la transferencia de la trama de información, se deben sumar los bytes y la suma.


Debe complementarse antes de convertir los datos a código ASCII. Es necesario convertir el código LRC obtenido a código ASCII de dos bytes. Al recibir una trama de información, se debe convertir el código ASCII de dos bytes al byte de datos de un byte, realizar una suma para obtener el código complementario y, a continuación, convertir el código LRC (indicado por el código ASCII de dos bytes de la cola de datos) al LRC de un byte (8 bits) y, finalmente, realizar la comparación.

Modbus-RTU adopta el método de calibración CRC-16 (código de paridad de redundancia cíclica de 16 bits), que incluye el sistema binario de 16 bits. El transmisor calcula el código de paridad CRC y lo coloca al final de la información transmitida. El receptor recalcula el código de paridad de la información recibida y lo compara con el código de paridad recibido. Si son incompatibles, se indican errores de comunicación.

El método de cálculo del código de paridad CRC-16 consiste en preestablecer primero el registro de 16 bits a 1 y, posteriormente, procesar gradualmente cada dato de 8 bits. Al calcular el código CRC, solo participan los bytes de datos de 8 bits; los bits de inicio, de parada y de verificación de paridad (incluida la verificación de paridad) no participan en el cálculo.

Al calcular el código CRC, si los datos del registro Xor son de 8 bits, es necesario mover los resultados al inferior y llenar la posición más alta con 0; luego verificar la posición más baja, si la posición más baja es 1, es necesario aplicar Xor al contenido del registro y al valor preestablecido, si la posición más baja es 0, entonces no es necesario aplicar Xor.

Este proceso debe repetirse ocho veces consecutivas. Tras el octavo desplazamiento, si se realiza una operación XOR de 8 bits sobre el contenido del registro actual, este proceso se repetirá ocho veces como se indicó anteriormente. Una vez procesada toda la información de los datos, el contenido del último registro será el valor del código CRC. El proceso de cálculo del código CRC se muestra en la Figura 1.

Byte siguiente byte

Todos los bytes han sido ¿procesamiento terminado

FIN

Figura 14. Proceso de cálculo del código de paridad CRC

4.4 Manejo de errores

Cuando el instrumento detecta el error excluido del código de paridad, el mensaje se envía de vuelta al host. La posición más alta del código de función es 1, que corresponde al código funcional devuelto desde el equipo auxiliar al host, más 128, basado en el código funcional transmitido desde el host. El formato del mensaje de error es el siguiente:

	Código de función		Códig	go de paridad
Código de dirección	(el más alto	Código de error	Byte bajo	Byte alto
	la posición es una)			
1 byte	1 byte	1 byte	1 byte	1 byte

Tabla 6 Formato del marco del mensaje de error

Los códigos de error son los

siguientes:

01H	Código de función no válido	El código de función recibido no es compatible con el instrumento
02H		La dirección de datos recibida está por encima del
	válida	rango del instrumento
03H	Valor de datos no válido	El valor de los datos recibidos está por encima del rango de datos de la
		dirección correspondiente

4. 5 Ejemplos de mensajes de comunicación

4. 5. 1 Registro de lectura (código de función 03/04H)

Esta función permite a los usuarios obtener datos de recopilación y registro del instrumento, así como los parámetros del sistema. El máximo número de solicitudes del host es 125. El siguiente ejemplo muestra los datos básicos IA, IB e IC, cuyo cálculo accesorio lee tres veces desde la dirección de lectura 01H (dos bytes por cada longitud de registro; la dirección inicial de IA es 0100H y el número de registros es tres).

	CÓDIGO ASCII	CÓDIGO HEXAGONAL
Marca de inicio	:	ЗАН
Código de dirección	01	30 31 horas hora s
Código de función	03	30 33 horas hora s
Dirección de registro inicial	0107	30 31H 30H 37H hora s
El número de Registro	0003	30H 30H 30H 33H
Código de paridad	F1	46 31 horas hora
Marca final	<cr><lf></lf></cr>	0DH 0AH

Tabla 7 Lectura del registro de la máquina host para buscar el marco de datos (modo ASCII)

Marca de inicio	Detención de tiempo de
	cuatro bytes

Código de dirección		01H
Código de función		03H
Registro de inicio	Byte alto	01H
DIRECCIÓN	Byte bajo	07H
El número de	Byte alto	00H

Marca final		Detención de tiempo de cuatro bytes
paridad	Byte alto	F6H
Código de paridad	Byte bajo	B5H
Registro	Byte bajo	03H

Tabla 8 Lectura del registro de la máquina host para buscar el marco de datos (modo RTU) Los datos devueltos por la máquina accesoria muestran IA=03EDH(1.005),IB=03F0H(1.008),IC=03E0H(0.992),

La máquina de posición obtiene el valor actual real de acuerdo con el apéndice 0 mediante la transformación de datos.

	CÓDIGO ASCII	CÓDIGO HEXAGONAL
Marca de inicio	:	3AH
Código de dirección	01	30 31 horas hora s
Código de función	03	30 33 horas hora s
Número de bytes	06	30 36 horas hora s
Los datos del registro uno	03ED	30 33H 45H 44H hora s
Los datos del registro dos	03F0	30 33H 46H 30H hora s
Los datos del registro tres	03E0	30 33H 45H 30H hora s
Código de paridad	30	33 30 horas hora s
Marca final	<cr><lf></lf></cr>	0DH 0AH

Tabla 9 Lectura del marco de datos de respuesta de la máquina accesoria de registro (modo ASCII)

Marca de inicio		Detención de tiempo de cuatro bytes
Código de dirección		01H
Código de fi	unción	03H
Número de	bytes	06H
Los datos de	Byte alto	03H
registrar uno	Byte bajo	EDH
Los datos de	Byte alto	03H
registrar dos	Byte bajo	F0H
Los datos de	Byte alto	03H
registro tres	Byte bajo	E0H
Código de paridad	Byte bajo	8 canales
paridad	Byte alto	5EH

Marca final	Detención de tiempo de cuatro bytes
IIIIai	

Tabla 10 Lectura del marco de datos de respuesta de la máquina accesoria de registro (modo RTU)

4. 5. 2 Escritura de un registro continuo de múltiples puntos (10H)

El equipo host utiliza esta función para guardar datos multipunto en el registro del instrumento. Sin embargo, este debe ser escribible y su número no puede exceder el rango de direcciones. El protocolo de comunicación Modbus permite guardar hasta sesenta registros por vez. El siguiente ejemplo muestra la configuración de la pantalla LED al máximo brillo (clase dieciséis).

	CÓDIGO ASCII	CÓDIGO HEXAGONAL
Marca de inicio	:	ЗАН
Código de dirección	01	30 31 horas hora s
Código de función	10	31 30 horas hora s
Dirección de registro inicial	000A	30 30H 30H 41H hora s
El número de Registro	0001	30 30H 30H 31H hora s
el número de bytes leídos	02	30 32 horas hora s
Datos de lectura	0010	30 30H 31H 30H hora s
Código de paridad	D2	44 32 horas hora s
Marca final	<cr><lf></lf></cr>	0DH 0AH

Tabla 11 Escritura del registro en la máquina host para buscar el marco de datos (modo ASCII)

Marca de inicio		Detención de tiempo de cuatro
		bytes
Código de di	rección	01H
Código de fi	ınción	10 horas
Registro de inicio	Byte alto	00H
DIRECCIÓN	Byte bajo	ОАН
El número de	Byte alto	00H
Registro	Byte bajo	01H
el número de by	rtes leídos	02H
Datos de lectura	Byte alto	00H
	Byte bajo	10 horas
	Byte bajo	А7Н

Código de paridad	Byte alto	36 horas
Marca final		Detención de tiempo de cuatro bytes

Tabla 12 Escritura del registro de la máquina host para buscar el marco de datos (modo RTU)

K10)	7	,
	CÓDIGO ASCII	CÓDIGO
		HEXAGONAL
Marca de inicio	:	ЗАН
Código de dirección	01	30 31 horas
		hora
		s
Código de función	10	31 30 horas
		hora
		S
Dirección de registro inicial	000A	30 30H 30H 41H
		hora
		s
El número de registro de lectura	0001	30H 30H 30H 31H
Código de paridad	E4	45 34 horas
		hora
		s
Marca final	<cr><lf></lf></cr>	0DH 0AH
iviaica IIIIai	CIV \LI'	ODII OAII

Tabla 13 Escritura del marco de datos de respuesta del accesorio de registro (modo ASCII)

Detención de tiempo de cuatro
bytes
01H
10 horas

Registro de inicio	Byte alto	00H
DIRECCIÓN	Byte bajo	ОАН
El número de	Byte alto	00H
Registro	Byte bajo	01H
Código de paridad	Byte bajo	21H
ринава	Byte alto	СВН
Marca final		Detención de tiempo de cuatro bytes

Tabla 14 Escritura del marco de datos de respuesta del accesorio de registro (modo RTU)

Apéndice

1. Tabla de información dedirecciones

			Parámetros del sistema	
DIRECC IÓN	Por defecto ajustes	Artículo	Descripción	Atributo
0000H	-	SERH	Número de serie en posición alta	R
0001H	-	SERL	Número de serie en posición baja	R
0002H	-	ESTADO	Estado de funcionamiento del sistema (reservado)	R
0003Н	8888	Trabajador social	Configuración de contraseña de programación	R/W
0004H	1	Dirección	Dirección del instrumento	R/W
0005H	9600	CBS	Selección de la velocidad en baudios de comunicación	R/W
0006Н	1.8.N.2	CDS	Selección del formato de datos de comunicación	R/W
0007H	Unidad de tratamie nto de residuos	CPS	Selección del protocolo de comunicación	R/W
0008H	0	DCW	Byte de control de visualización	R/W
0009Н	2	TDT	Cuando DCW=0, se muestra el tiempo de conmutación automática (s)	R/W
000AH	8	BCW	Byte de control de brillo	R/W
000BH	0	NETO	Tipo de red eléctrica (0-trifásico de cuatro cables, 1-trifásico de tres cables)	R/W
000CH	1	URATIO	Tasa de transmisión de voltaje nota 1	R/W
000DH	1	IRATIO	Tasa de transmisión de voltaje nota 1	R/W
000EH	-	WRST	Reinicio del valor acumulado de energía eléctrica	R/W ^{注 2}
000FH	0	AOSI1	Salida de simulación 1Configuración del proyecto	R/W
0010H	9999	AOS1	Salida de simulación 1 respuesta de salida a escala completa	R/W

			configuración de parámetros	
0011H	0	AOSI2	Configuración del proyecto de salida de simulación 2	R/W
0012H	9999	AOS2	Salida de simulación 2 respuesta de salida a escala completa configuración de parámetros	R/W

0013H	0	AOSI3	Configuración del proyecto de salida de simulación	R/W
001311		710515	3	10 11
0014H	9999	AOS3	Salida de simulación 3 respuesta de salida a escala completa configuración de parámetros	R/W
0015H	0	AOSI4	Configuración del proyecto de salida de simulación 4	R/W
0016H	9999	AOS4	Simulació produ 4 producción a gran escala n cción configuración de parámetros de respuesta	R/W
0017H	0	DOSI1	Configuración del proyecto de salida digital 1	R/W
0018H	0000	DOS1L	Valor límite inferior de alarma de salida digital 1	R/W
0019H	9999	DOS1H	Valor superior de alarma de salida digital 1	R/W
001AH	0	DOSI2	Configuración del proyecto de salida digital t2	R/W
001BH	0000	DOS2L	Valor límite inferior de alarma de salida digital 2	R/W
001CH	9999	DOS2H	Valor superior de alarma de salida digital 2	R/W
001DH	0	DOSI3	Configuración del proyecto de salida digital 3	R/W
001EH	0000	DOS3L	Valor límite inferior de alarma de salida digital 3	R/W
001FH	9999	DOS3H	Valor superior de alarma de salida digital 3	R/W
0020H	0	DOSI4	Configuración del proyecto de salida digital 4	R/W
0021H	0000	DOS4L	Valor límite inferior de alarma de salida digital 4	R/W
0022H	9999	DOS4H	Valor superior de alarma de salida 4 de salida digital	R/W
			Información de la operación	
DIRECC IÓN	Por defecto ajustes	Artículo	Descripción	Atributo
0100H	-	Dio	Entrada y salida digitales	R
			Datos de capacidad	
	Electricidad		eléctrica	
DIRECC	Capacidad	Artículo	Descripción	Atributo
IÓN	DIRECCIÓ N			
0101H	1/129	UA/UAB	Voltaje de fase A (trifásico de cuatro cables)/cable AB voltaje (trifásico, tres cables)	R

0102Н	2/130	UB/UBC	Voltaje de fase B (trifásico de cuatro cables)/cable BC voltaje (trifásico, tres cables)	R
0103H	3/131	UC/UCA	Fase C Voltaje (tres fase cuatro cables)/CA cable (trifásico, tres cables)	R
0104H	4/132	Universidad Autónoma de Barcelona	Voltaje del cable AB (trifásico de cuatro cables)	R
0105H	5/133	Universidad de Columbia Británica	Voltaje del cable BC (trifásico de cuatro cables)	R
0106Н	6/134	Universidad de California	Voltaje del cable CA (trifásico de cuatro cables)	R
0107H	7/135	Iowa	Una corriente de fase	R
0108H	8/136	IB	Corriente de fase B	R

0109H	9/137	CI	Corriente de fase C	R
010AH	10/138	PD	Potencia activa total	R
010BH	11/139	Pensilvania	Una potencia activa de fase	R
010CH	12/140	PB	Potencia activa de la fase B	R
010DH	13/141	ordenador personal	Potencia activa de la fase C	R
010EH	14/142	QS	Potencia reactiva total	R
010FH	15/143	Control de calidad	Una potencia reactiva de fase	R
0110H	16/144	Mariscal de campo	Potencia reactiva de la fase B	R
0111H	17/145	Control de calidad	Potencia reactiva de la fase C	R
0112H	18/146	PFS	Factor de potencia total	R
0113H	19/147	PFA	Un factor de potencia	R
0114H	20/148	PFB	Factor de potencia B	R
0115H	21/149	PFC	Factor de potencia C	R
0116H	22/150	SS	Potencia aparente total	R
0117H	23/151	SA	Un poder aparente	R
0118H	24/152	SB	B potencia aparente	R
0119H	25/153	CAROLINA DEL SUR	C potencia aparente	R
011AH	26/154	FR	frecuencia	R
		•	Datos de energía	•
DIRECC IÓN	Por defecto ajustes	Artículo	Descripción	Atributo
011BH	-	+Wh(H)	Dirección de avance, energía activa, posición alta	R nota 3
011CH	-	+Wh(L)	Dirección de avance, posición baja de energía activa	R nota 3
011DH	-	-Wh(H)	Posición alta de energía activa inversa	R nota 3
011EH	-	-Wh(L)	Posición baja de energía activa inversa	R nota 3
011FH	-	+varh(H)	Dirección de avance, posición alta de energía reactiva	R nota 3
0120Н	-	+varh(L)	Posición baja de energía reactiva en dirección de avance	R nota 3
0121H	-	-varh(H)	Posición alta de energía reactiva inversa	R nota 3
0122H	-	-varh(L)	Posición baja de energía reactiva inversa	R nota 3

Mesa información de la dirección

Nota: 1. El producto de la relación de voltaje y la relación de corriente no debe exceder 100000, de lo contrario, provocará que parte de los datos se desborden durante la visualización.

2Cuando la lectura es 0, la lectura 0AA55H restablece el valor de energía acumulada, los demás valores no son válidos.

3. Los datos de energía pueden escribir WRST (000EH) en 0AA55H para restablecer.

2. Transformación de datos de capacidad eléctrica

Todos los datos de capacidad de salida eléctrica que responden desde el instrumento multifunción digital PD7777-8S4 son

Se especifica un RX de dos bytes según una fórmula (la energía es de cuatro bytes); el número negativo se representa mediante el complemento. La fórmula exacta se muestra en la tabla 16: PT es la relación de voltaje y CT es la relación de corriente.

Artículo	Fórmula	Área numérica	símbolo	Observaciones
Voltaje	$U = RX \times PT \times 0.01$	0~65535	no firmado	UA, UB, UC, UAB, UBC, UCA
Actual	$I = RX \times CT \times 0,001$	0~65535	no firmado	IA, IB, IC
frecuencia	$F = RX \times 0.01$	0~65535	no firmado	FR
Factor de potencia	$PF = RX \times 0,0001$	-10000~10000	firmado	PFA, PFB, PFC, PFS
Potencia activa	$P = RX \times PT \times CT$	-32768~32767	firmado	PA, PB, PC, PS
reactivo fuerza	$Q = RX \times PT \times CT$	-32768~32767	firmado	Control de calidad, control de calidad, control de calidad, seguridad
Aparente Fuerza	$S = RX \times PT \times CT$	0~65535	no firmado	SA, SB, SC, SS
Energía	$W = RX \times PT \times CT \times 10$	0~2 ³² -1	no firmado	+Wh, -Wh, +varh, -varh

Fórmula de transformación de datos de la Tabla 16

3. Palabra de control posterior (BCW)

BCW	1-16	1-más oscuro, 16-más brillante	
-----	------	--------------------------------	--

Tabla 17 Palabra de control de retroceso

4. Palabra de control de comunicación

	00Н	1200 bps	-
CBS	01H	2400 bps	-
Control de	02H	4800 bps	-
baudios tasa	03H	9600 bps	-
	04H	19200 bps	-
	05H	38400 bps	-
CDS	00Н	NINGUN O	Sin calibración
Formato de datos	01H	EXTRA ÑO	Comprobación de paridad impar
	02H	INCLUS O	Comprobación de paridad par
CPS	00Н	Unidad de tratamien	Modbus-RTU

		to de residuos	
Comunicación	01H	ASCII	Modbus-ASCII
protocolo			

Tabla 68 Palabra de control de comunicación

5. Entrada y salida digital (DIO)

Byte bajo de DIO :

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
-	-	-	-	DI3	DI2	DI1	DI0

DIO~DI3 muestra la entrada y salida de datos, y entre ellos '0' indica que la señal de entrada de ese circuito está desconectada y '1' está cerrada.

Byte alto de DIO:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
-	-	-	-	DO3	DO2	DO1	HACER0

DO0~DO3 muestra la entrada y salida de datos, y entre ellos '0' indica que la salida de ese circuito está desconectada y '1' está cerrada.

6. Configuración de salida de transmisión de simulación

		0	Cerrar ese canal de salida de transmisión de simulación
	Transmisión	1~26	Respondiendo respectivamente 26 mediciones de electricidad
AOSIx			capacidad, salida 0~20 mA
	proyecto de salida		
		129~154	Respondiendo respectivamente 26 mediciones de
			electricidad
			capacidad, salida 4~20 mA
AOSx	Transmisión	1~9999	Parámetros de respuesta de salida de 20 mA
	parámetros de salida		

Tabla 19 Configuración de salida de transmisión de simulación

Todos los datos de configuración de la transmisión de simulación se especifican de acuerdo con alguna fórmula como dos SX y el área numérica es 1~9999 (se toma el valor absoluto). La fórmula exacta se muestra en la Tabla 13.

Para ejemplos: Para el instrumento de 10 kV/100 V, iniciando la configuración desde la primera salida de transmisión de simulación UA (4~20 mA), luego busque en la tabla 11 para saber que la configuración de AOSI1 es 129, PT = 100 y de la tabla 21, podemos saber que AOS1 = $U/PT \times 10 = 10 \text{ kV}/100 \times 10 = 1000$. Eso significa que cuando el voltaje de medición es 10 kV, la corriente de salida del transmisor del primer circuito es 20 mA.

7. Configuración de salida digital

		0	El canal de salida está desconectado		
DOSIx	Salida digital	1~26	Respondiendo respectivamente 26 mediciones de		
	artículo		electricidad capacidad		
		128	El canal de salida está cerrado		
DOSxL	Alarma más baja	0~9999	Cuando el valor de medición sea inferior a este valor		
	valor límite		alarmas		
DOSxH	Alarma superior	0~9999	Cuando el valor de medición sea mayor que este valor		
	valor		alarmas		
nota: La dirección de canacidad eléctrica se refiere a la tabla 15					

Todos los datos de la configuración de salida digital se especifican como SX de dos bytes según alguna fórmula, y el área numérica es 1.~9999 (valor absoluto). La fórmula exacta se muestra en la Tabla 20. El instrumento utiliza un área Schmitt de diez unidades para calcular la salida de alarma. Por ejemplo, si el valor de medición es inferior al límite inferior, el instrumento deja de emitir alarmas solo si supera el límite inferior más 10. Si, por el contrario, supera el límite superior, el instrumento deja de emitir alarmas solo si supera el límite superior menos 10. Por lo tanto, el valor superior debe ser al menos 20 veces superior al límite inferior. El máximo del límite inferior es 9979 y el mínimo del superior es 0020.

Por ejemplo: Para el medidor de 10 kV/100 V, al iniciar la configuración de la primera salida digital es UA <8 kV o UA >12 kV, las alarmas del medidor, luego buscándolo en la Tabla 20, podemos saber que la configuración de DOSI1 es 1, PT = 100, y de la tabla 21, podemos ver DOS1L = UL/PT× $10 = 8 \text{ kV}/100 \times 10 = 800$, DOS1H = UH/PT× $10 = 12 \text{ kV}/100 \times 10 = 1200$. Eso significa que cuando el voltaje del lado de una sola vez es inferior a 8 kV o superior a 12 kV, la primera salida digital se cierra.

Artículo	Fórmula	Área numérica	símbolo	Observaciones
Voltaje	$SX = U/PT \times 10$	1~9999	no firmado	UA, UB, UC, UAB, UBC, UCA
Actual	$SX = I/CT \times 1000$	1-9999	no firmado	IA, IB, IC
Frecuencia	$SX = F \times 100$	1-9999	no firmado	FR
Factor de potencia	$SX = PF \times 1000$	1-9999	no firmado	PFA, PFB, PFC, PFS
Potencia activa	SX = P/PT/CT	1-9999	no firmado	PA, PB, PC, PS
potencia reactiva	SX = Q/PT/CT	1-9999	no firmado	Control de calidad, control de calidad, control de calidad, seguridad
Potencia aparente	SX = S/PT/CT	1-9999	no firmado	SA, SB, SC, SS

Nota: Relación PT-voltaje Relación corriente-TC

Tabla 21 Fórmula de transformación de datos de salida de transmisión de simulación/salida digital